Anti-Tumour Treatment

Novel anticancer therapeutics targeting telomerase

Maria Ruden a,b,c, Neelu Puri a,⇑,⇑

a Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107 1822, USA

⇑ Corresponding author. Address: University of Illinois College of Medicine at Rockford, Department of Biomedical Sciences, 1601 Parkview Avenue, Rockford, IL 61107, USA. Tel.: +1 815 395 5678; fax: +1 815 395 5666.
E-mail address: neelupur@uic.edu (N. Puri).

⇑ c Present address: Department of Medicine, University of Illinois at Chicago, 900 S Ashland Ave., Suite 3306 (M/C 767), Chicago, IL 60607 4067, USA. Tel.: +1 312 355 5953; fax: +1 312 268 6226.

ABSTRACT

Telomeres are protective caps at the ends of human chromosomes. Telomeres shorten with each successive cell division in normal human cells whereas, in tumors, they are continuously elongated by human telomerase reverse transcriptase (hTERT). Telomerase is overexpressed in 80–95% of cancers and is present in very low levels or is almost undetectable in normal cells. Because telomerase plays a pivotal role in cancer cell growth it may serve as an ideal target for anticancer therapeutics. Inhibition of telomerase may lead to a decrease of telomere length resulting in cell senescence and apoptosis in telomerase positive tumors. Several strategies of telomerase inhibition are reviewed, including small molecule inhibitors, antisense oligonucleotides, immunotherapies and gene therapies, targeting the hTERT or the ribonucleoprotein subunit hTER. G-quadruplex stabilizers, tankyrase and HSP90 inhibitors targeting telomere and telomerase assembly, and T-oligo approach are also covered. Based on this review, the most promising current telomerase targeting therapeutics are the antisense oligonucleotide inhibitor GRN163L and immunotherapies that use dendritic cells (GRVAC1), hTERT peptide (GV1001) or cryptic peptides (Vx-001). Most of these agents have entered phase I and II clinical trials in patients with various tumors, and have shown good response rates as evidenced by a reduction in tumor cell growth, increased overall disease survival, disease stabilization in advanced staged tumors and complete/partial responses. Most therapeutics have shown to be more effective when used in combination with standard therapies, resulting in concomitant telomere shortening and tumor mass shrinkage, as well as preventing tumor relapse and resistance to single agent therapy.

© 2012 Elsevier Ltd. All rights reserved.

Introduction

Telomeres are specialized structures at the ends of human chromosomes that were discovered in 1985 by Elizabeth Blackburn and Carol Greider. Telomeres are composed of 1000–2000 non-coding tandem repeats of TTAGGG nucleotide DNA sequences and serve as protective “caps” at the ends of chromosomes, protecting them from DNA degradation and unwanted repair. In normal human cells telomeres shorten with each successive cell division, and upon reaching critical lengths they elicit DNA-damage responses thus activating cell cycle check points leading to cell senescence and apoptosis. In contrast, cancer cells which develop chromosomal aberrations show activation or re-activation of telomerase upon exposure to a DNA damage signal, thereby bypassing cell cycle checkpoints and leading to uncontrolled growth and proliferation (Fig. 1).

Telomerase is a human ribonucleoprotein reverse transcriptase (hTERT) composed of two main subunits: the catalytic protein hTERT and the ribonucleoprotein template hTER. Telomerase synthesizes telomeric DNA by continually adding single stranded TTAGGG sequences onto the single stranded 3′ end of telomere in the 5′ to 3′ direction. Telomerase consists of 451 nucleotides but only the 11-base region, consisting of nucleotides 46 through 56 (5′-CUACCUCUAAC-3′), serves as the template for telomere synthesis (Fig. 2).

An increase in telomerase activity is often directly correlated with uncontrolled growth of cells, which is a known hallmark of cancer. Telomerase, and specifically its catalytic subunit hTERT, is overactive in 85–90% of most cancers and has become a widely acceptable tumor marker and a popular target for anticancer therapeutics. In normal non-malignant cells telomerase is present in very low or almost undetectable levels and is less active or inactive compared to cancer cells. One of the advantages of telomerase targeting therapies is that rapidly proliferating cancer cells have shorter telomeres (5 kb) compared to normal somatic cells and stem cells.
(10–20 kb) that have not yet reached critical lengths due to the end replication problem that occurs as a result of aging.14,16 By de novo synthesizing TTAGGG repeats, telomerase can maintain cancer cell telomeres at stable length at all times, ensuring their rapid proliferating potential and immortal capacity. Therefore, telomerase upregulation is considered to be a critical step in cell tumorigenesis. The difference in telomere lengths and telomerase activity in normal and cancer cells explains an induced therapeutics cytotoxicity on cancer cells while having a minimal impact on normal cells.10

Under normal aging conditions, telomeres become shorter with each cell division and loose their G-rich nucleotide sequence.17 To maintain proper activity of telomeres (required for protection of chromosomal integrity) a 150–250 nucleotide-long single-stranded G-rich 3’ overhang forms one of the two higher order structures, a T-loop or a G-quadruplex complex, which can help maintain proper activity of telomeres (Fig. 3).17–19 Shelterin complex is a set of specialized proteins that are responsible for maintaining the T-loop structure by capping the telomeres and aiding in telomere-telomerase assembly (Fig. 3).14–6 The T-loop structure is also protected from the exposure to extracellular DNA damage or repair mechanisms by multiple copies of POT1 (protection of telomerase) protein, an important ssDNA binding protein in humans.18–21 Therefore, by targeting telomere-associated proteins, the T-loop structure can become compromised, resulting in a significant telomere shortening and premature cell death. A G-quadruplex is another higher order structure, formed by stacking of guanosine (G) tetrads by incorporating a 16-nucleotide d(GGGTTAGGGTTAGGGT) and a 6-nucleotide d(TAGGGT) sequence of telomeric 3’ overhang, folded via hydrogen-bonding (Fig. 3).18,19

Fig. 1. Telomeres shortening in normal vs. cancer cells.

Fig. 2. Targeting telomerase with small molecules and AS-ODNs. Telomeres are composed of 1000–2000 oligonucleotides of non-coding G-rich nucleotide sequences, (TTAGGG)_n, that form a 3’-overhang on the 3’ end of chromosomes.8,9,11 The RNA template of telomerase (hTERT) consists of a total of 451 nucleotides of which nucleotides 46 through 56 (5’-CUAACCCUAAC-3’) serve as a template for adding new telomeric repeats.10,11 GRN163L is a 13-mer oligonucleotide that inhibits telomerase by acting as a direct telomerase RNA template antagonist binding with high specificity and affinity at the active site of hTERT, leading to a complete inhibition of the enzyme.5,24 GRN163L is currently in 12 phase I/II clinical trials (Table 3). BIBR1532 (2-[(E)-3-naphthalen-2-yl-butyrylamin]-benzoic acid) is a non-competitive non-nucleosidic mixed type hTERT active site inhibitor.25 BIBR1532 is a small molecule telomerase inhibitor, which impairs the DNA substrate elongation upon template copying by reducing the number of TTAGGG repeats.22
(hTER), leading to inhibition of telomerase activity (TA), telomere shortening and inhibition of cell proliferation. Another strategy is targeting the telomerase subunit indirectly with G-quadruplex stabilizers, Tankyrase or HSP90 inhibitors, thus blocking telomerase access to telomeres or inhibiting binding of telomerase-associated proteins leading to telomere uncapping and cell apoptosis.3,11

One of the most recent approaches of telomere targeting is the T-oligo approach, which can induce DNA damage responses leading to tumor cell apoptosis or inhibition of cell proliferation.4,5,14,22 The most novel therapeutics reviewed here are small molecule inhibitors, antisense oligonucleotides, immunotherapies, gene therapies, G-quadruplex stabilizers, telomere and telomerase associated protein inhibitors, and T-oligo (Table 1).

Antisense oligonucleotides (AS-ODNs) – targeting hTER

Advantages of antisense oligonucleotide inhibitors

The antisense oligonucleotides (AS-ODNs) approach for targeting telomerase was first derived using AS-ODNs to block the transcription of mRNA with a sequence complementary to sense RNA. It was initially used as an anticancer treatment in 1995.16,23 AS-ODNs can be used to target the catalytic component of telomerase (hTERT) or the RNA template (hTER) and are composed of short single-stranded DNA (ss-DNA) sequences that inhibit TA by complementary binding to the RNA template.16 AS-ODNs have been studied intensively and their structure has been modified and significantly improved over the past decade. One of the advantages of this approach is that AS-ODNs do not promote multidrug resistance mechanisms (MDR).3,24 Currently the most successful AS-ODNs in development is GRN163L (Imetelstat®) (Geron Corporation, Menlo Park, CA).

GRN163L – an AS-ODN telomerase inhibitor

GRN163 was, the first most promising oligonucleotide and the first-generation lead compound targeting hTERT, is a N3-P5-thiophosphoramidate, which require a lipid carrier molecule and a lipid-based transfection agent to effectively traverse cell and tissue membranes.5,24 While GRN163 showed good results in inhibiting
telomerase, however, the lack of a lipid carrier has diminished its potential due to limited uptake. To solve this problem, a lipid-modified version, the GRN163L, has been developed. GRN163L is a 13-mer oligonucleotide N3′-P5′-thio-phosphoramidate with a covalently bound lipophilic palmitoyl (C16) group attached to its 5′-thio-phosphate. GRN163L causes inhibition of TA by acting as a direct telomerase RNA template antagonist. GRN163L does not act like a normal antisense oligonucleotide, but with its 5′-Palmitoyl-TAGGGTAGGACAA-3′ oligonucleotide chain, complementary to the hTERT region of telomerase, it partially overlaps the hTERT template by binding with high specificity and affinity at its active site, leading to complete inhibition of the enzyme (Fig. 2).

Studies have found that GRN163L may be slightly less potent than the GRN163 in a cell-free telomere repeat amplification protocol (TRAP) assay, possibly due to some interference of the lipid moiety with the telomerase template. However, in a study with 13 solid and hematologic tumor cell lines, GRN163L has shown an IC50 range between 0.8 and 6.5 mg/mL, with the average T1/2 being 2.9–5.3 h for 5–15 mg/kg intravenously administered drug. This indicates that GRN163L has better cell and tissue penetration, as evidenced by its low IC50 values, and greater biodistribution in normal and cancer cell lines, possibly due to the fact that it does not require a lipid carrier and can traverse membranes more effectively than GRN163.

In addition, in vivo studies with a human hepatoma tumor xenograft mouse model have shown that, when administered parenterally, GRN163L has a greater uptake than GRN163. GRN163L - Preclinical Studies (Table 2)

See Supplement for additional information.

GRN163L – clinical trials

After showing hopeful results in multiple preclinical studies, GRN163L has been moved into stage I and stage I/II clinical trials targeting patients with chronic lymphoproliferative diseases (CLD), refractory and relapsed solid tumor malignancies, refractory and relapsed MM, locally recurrent or metastatic breast cancer (MBC), and advanced and metastatic non-small cell lung cancer (NSCLC). More information on these trials can be found in Table 3. To determine the maximum tolerated dose (MTD), including dose-limiting toxicities (DLT), doses of GRN163L were escalated continually in each cohort study based on 3 or 4-week cycles until MTD was reached.

In a phase I study of GRN163L in combination with paclitaxel and bevacizumab in patients with locally recurrent or metastatic breast cancer, a total of 14 patients were treated, 3 with de novo MBC and 6 with prior (neo) adjuvant taxane therapy. Due to a dose escalation design, the majority of patients (78.6%) experienced dose reductions/delays with GRN163L and/or paclitaxel during later treatment cycles. The objective response rate (ORR) (measurable response) was 38.5% and, currently, alternative dosing schedules are being tested. In phase I clinical trial in patients with relapsed or refractory MM and phase I trial in patients with advanced solid tumors, MTD’s were determined, with most prominent DLTs being thrombocytopenia and active prolonged thromboplastin time (aPTT) in the first trial, and thrombocytopenia and hypersensitivity reactions in the second trial, which have appeared in later treatment cycles only. The results of preliminary clinical trials show good tolerability to GRN163L despite some minor toxicities and adverse events, such as neutropenia and thrombocytopenia, myelosuppression and hypersensitivity reactions, as well as prolonged time to coagulation (prolonged aPTT), which are commonly seen in the oligonucleotide class of drugs.

Based on good preliminary results of GRN163L in phase I clinical trials, patients with NSCLC, locally recurrent or metastatic breast cancer, previously treated MM and patients with essential thrombocytopenia (ET) are currently being recruited for phase II clinical trials with GRN163L. The objective of the phase II trials in patients with ET is to evaluate the efficacy of GRN163L as measured by hematological response (decrease in platelet count) in those patients who require cytoreduction or have failed to respond or tolerate previous therapies or have refused standard of care. In addition, since preclinical studies with GRN163L showed that it can restore sensitivity of HER2+ breast cancer cell lines to trastuzumab, patients with HER2+ breast cancers are currently being recruited into a phase I clinical trial (see Table 3 for more info).

Small molecule inhibitors – targeting hTERT

BIBR1532

Currently, there have been only a few successful hTERT inhibitors developed. BIBR1532 (2-{E})-3-naphthalen-2-yl-but-2-enylami-
<table>
<thead>
<tr>
<th>Phase/identifier</th>
<th>Status/start–end</th>
<th>Condition</th>
<th>Drug interventions</th>
<th>Outcome measures</th>
<th>Current results/Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I NCT00124189</td>
<td>Ongoing 7/05–3/10</td>
<td>CLD</td>
<td>GRN163L</td>
<td>Safety, tolerability, DLT, MTD, PK, PD</td>
<td>Trial ongoing, no study results yet available</td>
</tr>
<tr>
<td>I NCT00310895</td>
<td>Ongoing 3/06–9/10</td>
<td>Solid tumor malignancies</td>
<td>GRN163L</td>
<td>Safety, DLT, MTD, PK, disease response</td>
<td>31 treated; 4 remain on study; MTD in range 9.4–11.7 mg/kg d1,d8 of 21d cy; DLT – thrombocytopenia, myelosuppression and hypersensitivity reactions.129</td>
</tr>
<tr>
<td>I NCT00594126</td>
<td>Ongoing 11/07–3/10</td>
<td>Multiple myeloma</td>
<td>GRN163L</td>
<td>Safety, MTD, PK, PD, efficacy</td>
<td>DLT – thrombocytopenia & aPTT; MTD in range of 4.8–7.2 mg/kg/2hr IV/t.i.w.28</td>
</tr>
<tr>
<td>I NCT00510445</td>
<td>Ongoing 6/07–8/10</td>
<td>Non-small cell lung cancer</td>
<td>GRN163L, paclitaxel (P), carboplatin (C)</td>
<td>Safety, MTD, PK, efficacy</td>
<td>Trial ongoing, no study results yet available</td>
</tr>
<tr>
<td>I NCT00718601</td>
<td>Ongoing 7/08–12/10</td>
<td>Multiple myeloma</td>
<td>GRN163L, bortezomib, dexamethasone</td>
<td>MTD, Safety, PK, efficacy</td>
<td>Trial ongoing, no study results yet available</td>
</tr>
<tr>
<td>I/II NCT00732056</td>
<td>Ongoing 7/08/12/10</td>
<td>Recurrent or metastatic breast cancer</td>
<td>GRN163L, paclitaxel (P), bevacizumab (B)</td>
<td>Safety, MTD, efficacy, PK, efficacy</td>
<td>14 treated; 2 remain on study; dose delays of GRN163L and/or P in later cycles; ORR 38.5%.27</td>
</tr>
<tr>
<td>II NCT01137968</td>
<td>Recruiting 5/10–2/12</td>
<td>Non-small cell lung cancer</td>
<td>GRN163L, bevacizumab</td>
<td>PFS, ORR, time to all-cause mortality, safety, tolerability</td>
<td>Trial ongoing, no study results yet available</td>
</tr>
<tr>
<td>II NCT01256762</td>
<td>Recruiting 11/10–2/13</td>
<td>Recurrent or metastatic breast cancer</td>
<td>GRN163L, paclitaxel with or without bevacizumab</td>
<td>PFS, ORR, clinical benefit rate, safety, tolerability</td>
<td>Trial ongoing, no study results yet available</td>
</tr>
<tr>
<td>II NCT01243073</td>
<td>Recruiting 12/10–1/13</td>
<td>Essential thrombocythemia</td>
<td>GRN163L, standard of care</td>
<td>Hematologic response, safety, tolerability, number of patients with hematological toxicities, non-heme grade 3 and 4 AEs and hemorrhagic events</td>
<td>Trial ongoing, no study results yet available</td>
</tr>
<tr>
<td>II NCT01242930</td>
<td>Recruiting 12/10–2/13</td>
<td>Multiple myeloma</td>
<td>GRN163L, standard of care</td>
<td>PFS, ORR, safety, tolerability, number of patients with hematological toxicities</td>
<td>Trial ongoing, no study results yet available</td>
</tr>
<tr>
<td>I NCT01265927</td>
<td>Recruiting 1/11–1/14</td>
<td>HER2+Breast cancer</td>
<td>GRN163L, trastuzumab</td>
<td>DLT, PK, ORR, PFS, safety and biologic effects of GRN163L in combination with trastuzumab</td>
<td>Trial ongoing, no study results yet available</td>
</tr>
<tr>
<td>I NCT01273090</td>
<td>Recruiting 5/11–11/14</td>
<td>Solid tumors or lymphoma</td>
<td>GRN163L</td>
<td>MTD, toxicities, PK, biologic effects, effect on telomeres and telomerase</td>
<td>Trial ongoing, no study results yet available</td>
</tr>
</tbody>
</table>

DLT, dose limiting toxicity; MTD, maximum tolerated dose; PK, pharmacokinetics; PD, pharmacodynamics; PFS, progression free survival; ORR, objective response rate; AEs, adverse events; aPTT, active thromboplastin time; t.i.w., three times a week. * Study end dates are estimated.
<table>
<thead>
<tr>
<th>Vaccine formulation</th>
<th>Condition</th>
<th>Phase, (n) Status</th>
<th>Immune response</th>
<th>Outcomes/Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GV1001, I540 peptide</td>
<td>Melanoma (IIIB-IV)</td>
<td>(n = 16) completed</td>
<td>No results yet available</td>
<td>No data available.44</td>
</tr>
<tr>
<td>GV1001, I540 peptide, GM-CSF</td>
<td>NSCLC (stage IIIB, IIIB, IV)</td>
<td>I/II, (n = 26) completed</td>
<td>GV1001: 13/24 (54%); I540: 2/24 (8%)</td>
<td>Safety: no major toxicity. Clinical: 1 – CR; 3 – SD; 1 – PD; med. OS 8.5 m, 8 pts. – 12 m, 6 pts. – 18 m.127</td>
</tr>
<tr>
<td>GV1001, cyclophosphamide (C), GM-CSF</td>
<td>NSCLC (stage IIB, IIIB, IV)</td>
<td>I/II, (n = 26) completed</td>
<td>GV1001: 13/24 (54%); I540: 2/24 (8%)</td>
<td>Safety: no major toxicity. Clinical: 1 – CR; 3 – SD; 1 – PD; med. OS 8.5 m, 8 pts. – 12 m, 6 pts. – 18 m.127</td>
</tr>
<tr>
<td>GV1001, cyclophosphamide (C), GM-CSF</td>
<td>NSCLC (stage IIB, IIIB, IV)</td>
<td>I/II, (n = 26) completed</td>
<td>No immune responses detected</td>
<td>Safety: no major toxicity. Clinical: med. OS 8.5 m, 8 pts. – 12 m, 6 pts. – 18 m.127</td>
</tr>
<tr>
<td>GV1001, imiquimod (I)</td>
<td>Pancreatic</td>
<td>I, (n = 14) completed</td>
<td>6/13 (46%)</td>
<td>Safety: well tolerated; no major toxicity or serious AEs reported55</td>
</tr>
<tr>
<td>GV1001, GM-CSF</td>
<td>Pancreatic</td>
<td>I, (n = 14) completed</td>
<td>6/13 (46%)</td>
<td>Safety: no major toxicity. Clinical: induction of IFNc, IL-6, IL-13.56</td>
</tr>
<tr>
<td>GV1001, GM-CSF, gemcitabine (G)</td>
<td>Pancreatic</td>
<td>I, (n = 14) completed</td>
<td>6/13 (46%)</td>
<td>Safety: well tolerated; no major toxicity. Clinical: induction of IFNc, IL-6, IL-13.56</td>
</tr>
<tr>
<td>GV1001, GM-CSF, gemcitabine (G)</td>
<td>Pancreatic</td>
<td>I, (n = 14) completed</td>
<td>6/13 (46%)</td>
<td>Safety: well tolerated; no major toxicity. Clinical: induction of IFNc, IL-6, IL-13.56</td>
</tr>
<tr>
<td>GV1001, GM-CSF, gemcitabine (G)</td>
<td>Pancreatic</td>
<td>I, (n = 14) completed</td>
<td>6/13 (46%)</td>
<td>Safety: well tolerated; no major toxicity. Clinical: induction of IFNc, IL-6, IL-13.56</td>
</tr>
<tr>
<td>GRNVAC1</td>
<td>Prostate</td>
<td>I, (n = 20) completed</td>
<td>19/20 (95%)</td>
<td>Safety: no major toxicity. Clinical: increase in PSAdt and molecular clearance of circulating micrometastases.59</td>
</tr>
<tr>
<td>GRNVAC1</td>
<td>AML</td>
<td>I, (n = 21/33) completed</td>
<td>55%</td>
<td>Safety: no major toxicity. Clinical: increase in PSAdt and molecular clearance of circulating micrometastases.59</td>
</tr>
<tr>
<td>Vx-001</td>
<td>Advanced cancers (various)</td>
<td>I/II, (n = 116) completed</td>
<td>Positive immune response (>3 yr)</td>
<td>Safety: no major toxicity. Clinical: 1pts. with BC – CR, 2pts. – PR, 34pts. – SD. Prolonged survival & positive correlation between immune and clinical responses61</td>
</tr>
<tr>
<td>Vx-001</td>
<td>NSCLC</td>
<td>I/II, (n = 22) completed</td>
<td>16/21 (76%) – early; 10/11 (91%) – late</td>
<td>Safety: no major toxicity. Clinical: 8/32 pts. (36%) – SD; med. OS – 30.6 m.64,128</td>
</tr>
<tr>
<td>Vx-001</td>
<td>Advanced cancers</td>
<td>I, (n = 19) completed</td>
<td>13/14 (93%) – early</td>
<td>Safety: no major toxicity; no DLT at 2–6 mg doses. Clinical: 4/19 (21%) – SD; no CR or PR; med. OS 15.2 m.62</td>
</tr>
<tr>
<td>Vx-001</td>
<td>NSCLC (7pts – IIIB, 6pts – IV)</td>
<td>I/II, (n = 13) completed</td>
<td>7/7 (100%)</td>
<td>Safety: grade I/II toxicity. Clinical: 3/10pts. (30%) – SD; med. TTP – 8.1 m. (IIIB), 2.3 m. (IV).67</td>
</tr>
<tr>
<td>Vx-001</td>
<td>Advanced solid tumors</td>
<td>I/II, (n = 71) completed</td>
<td>29/56 (52%) – early IR, 25/30 (83%) – late IR</td>
<td>Safety: grade 1 toxicity. Clinical: 3pts. (4.2%) objective response; 22/71 (31%) – SD; med. OS – 23.3 m. (early).67</td>
</tr>
<tr>
<td>Vx-001</td>
<td>Various cancers</td>
<td>I/II, (n = 97) completed</td>
<td>31% – before, 58% – early IR, 97% – late IR</td>
<td>Immune response: 24/78 (31%), 46/79 (58%), 37/47 (79%). Inverse correlation between IL-10 Tc and IFNγ.65</td>
</tr>
</tbody>
</table>

SD, stable disease; CR, complete response; CR, clinical remission; PR, partial response; OS, overall survival; TTSP, time to symptomatic progression; TTP, time to progression; AEs, adverse events; PFS, progression free survival; PSAdt, Prostate Specific Antigen doubling time; DFS, disease free survival; PD, disease progression; DLT, dose limiting toxicities.
no]-benzoic acid) is one of the most promising hTERT specific active site inhibitors to date. BIBR1532 is a non-nucleotidic small molecule synthetic compound that inhibits telomerase by non-competitively binding to the active site of hTERT. BIBR1532 does not block the basic template copying steps, but specifically impairs DNA substrate elongation upon template copying by reducing the number of TTAGGG repeats (Fig. 2). Therefore, it is suspected that BIBR1532 may have an influence on the translocation of the enzyme-DNA-substrate complex or may lead to dissociation of the enzyme from the DNA substrate during template copying. Results from multiple studies on BIBR1532 have shown a dose-dependent inhibition of telomerase with higher concentrations of BIBR1532, and have not shown any significant effects on normal human cells. Preclinical studies conducted in several human cancer cell lines have shown that treatment with BIBR1532 can repress TA and lead to tumor cell growth arrest without causing acute cytotoxicity. In DU145 (prostate cancer), MDA-MB-231 (breast cancer), HT1080 (fibrosarcoma cancer) and HT1-H430 (lung cancer) cell lines, treatment with BIBR1532 has shown significant telomere shortening, despite a long lag time. In a study of BIBR1532 in p53-negative BCR-ABL positive chronic myelogenous leukemia (CML) cell lines, which have critically short telomeres of approximately 3–5 kb, BIBR1532 treatment caused significant telomere shortening without affect on their cell growth kinetics, cell morphology, rate of apoptosis or cell senescence. This study showed that functional p53 may be required to induce the response to telomerase inhibitors in cells with critically shortened telomeres, resulting in cell death and/or apoptosis. Additionally, critically shortened telomeres may activate p53 and serve as tumor suppressors. Since the loss of functional p53 is associated with disease progression in 30% of CML patients, p53 may serve as an important genetic marker, which could help determine effective treatment options. In another study of BIBR1532 treatment of T-PLL (T-cell prolymphocytic leukemia) cell lines, which also have short telomeres and high telomerase activity, changes in cell morphology, indicative of apoptotic cell death were observed. Additionally, BIBR1532 can sensitize certain drug-resistant cell lines to other chemotherapies, as shown in a study with drug-resistant human promyelocytic leukemia (HL60-MX2) and breast cancer (MCF-7/Mln5-melphalan and MCF-7/Adr6-doxorubicin) cell lines and their drug-sensitive parental (WT) counterparts (HL60-WT and MCF7/WT), where BIBR1532 effectively inhibited TA and caused progressive telomere shortening in all cell lines except the MCF-7/Adr6 doxorubicin resistant cell line.
Telomerase based immunotherapies

Telomerase - a universal tumor antigen

The use of an immunotherapy approach, which was designed to induce CD8+ cytotoxic T lymphocytes (CTL) response for hTERT antigens in malignant tumors, has shown better telomerase inhibition than other therapies.41 Since telomerase is present in most cancers, its peptides are universal telomerase-associated antigens (TAAs). They are capable of producing strong immune response (IR) by eliciting both CD4+ and CD8+, T-cell responses and stimulating the hTERT peptide-specific CTL activity, potentially leading to tumor cell lysis.1,42,43 Telomerase is normally considered a self-antigen and should have conferred tolerance early in cell development, however, many studies show that immune tolerance to hTERT-specific antigens is not complete. Studies also show that hTERT-specific CTL's are less detectable in the peripheral blood of healthy patients compared to cancer patients.43 In addition, several strategies are employed in the development of vaccines that may induce hTERT’s immunogenicity and eliminate the issue of self-tolerance, such as use of adjuvants like GM-CSF or TLR-7, used in GV1001 vaccine, or use of cryptic peptide vaccines like Vx-001, in which one amino-acid residue of peptide may be replaced for another thus enhancing the affinity of that peptide to HLA molecules and stimulating production of CTLs.

Preclinical studies with hTERT peptides have led to successful progress in the development of telomerase-targeting immunotherapies and several vaccines that are currently in phase III clinical trials (Table 4). The two commonly used approaches of anticancer immunotherapies are the dendritic cell (DC) approach and the hTERT peptide vaccine approach. The most promising vaccines, GV-1001, GRNVAC1 and Vx-001 are further reviewed.6

GV1001 – hTERT peptide-based vaccine

GV1001 (KAEL-GemVax Co. Ltd., Gangnam-gu Seoul, Republic of Korea) is a 16 amino acid MHC class II-restricted hTERT peptide vaccine, which consists of amino acids 611–626 (EAR-PALLTSRLRF IPK) of the hTERT active site 44–46 GV1001 is used in conjunction with an adjuvant, such as granulocyte-monocyte colony-stimulating factor (GM-CSF) or Toll-like receptor-7 (TLR7) agonist (imiquimod).46,47 This may prevent the rapid degradation and elimination of anticancer vaccine peptides before recognition by the appropriate antigen presenting cells (APCs), which may occur due to a self-tolerance to self-peptides.46,48 GV1001 is administered as an MHC class-II peptide, which is endogenously processed to yield a MHC class-I peptide producing both CD4+ and CD8+ responses, thus leading to a robust CTL signaling cascade and a maximum IR (Fig. 4) (93; 94). The activity of CD4+ T cells at the tumor site leads to a secretion of IFN-γ and IL-2, further stimulating CD8+ CTLs and natural killer cells (NKs), which may help to increase the infiltration and the retention of CD8+ T-cells into the tumor sites leading to upregulation and re-expression of MHC class-I molecules.45,47 This may have a therapeutic advantage for treatment of advanced cancers that are associated with a progressive loss of MHC class-I molecules.45,47

A preclinical study with GV1001 in patients with hTERT positive B-cell chronic lymphocytic leukemia (B-CLL), of which 75% have overexpressed hTERT, has shown that these cells contain naturally occurring telomerase-specific T cells, which can mediate the IR to hTERT peptide 611–626 (GV1001) leading to lysis of autologous leukemic cells (92). The hTERT-positive B-CLL patients treated with GV1001 peptide-loaded DCs showed positive CD4+ and CD8+ T-cell responses without a negative effect on normal cells or autoimmunity.50 This study has revealed that GV1001 may be an effective method for treatment of patients with B-CLL and may be moved for testing in clinical trials.

GV1001 – clinical trials

GV1001 has successfully completed several phase I and II clinical trials conducted in patients with advanced stage melanoma, NSCLC, hepatocellular carcinoma (HCC) and in patients with pancreatic cancer 44,51–60 (See Table 4 for details). A new large randomized phase III clinical trial (Telovac) is currently in a recruiting phase for patients with locally advanced or metastatic pancreatic adenocarcinoma in multiple centers around the UK, with a primary aim to compare standard therapy to GV1001 and to measure the length of survival for a primary outcome measure.59 Results and information on additional clinical trials with GV1001 may be viewed in Table 4.

See Supplement for additional information.

Vx-001 – cryptic peptide-based vaccine

Studies have shown that tumor non-specific self-antigens could prevent a self-tolerance problem often caused by self-antigens.61 The HLA-I molecules consist of dominant and cryptic peptides.62 The dominant peptides have a strong affinity for HLA-I alleles, are abundant on the cell surface, and are strongly immunogenic, whereas cryptic peptides are not as abundant on the cell surface, have weak HLA-I affinity and are weakly immunogenic or completely lack immunogenicity. However, unlike dominant peptides, cryptic peptides do not undergo massive clonal deletion due to their poor expression and do not induce immune tolerance. Therefore, they may be better suited to be used as a peptide antitumor vaccine therapy. In addition, using tumor non-specific antigens may be a better choice for anticancer vaccines since they are not dependent on adjuvants or the efficacy of delivery.61,62

The new peptide-based anticancer therapy vaccine, Vx-001 (Vaxxon Biotech, Paris, France), consists of a low affinity cryptic peptide hTERT572 (RLFFYRKSV) and its optimized version, the hTERT572Y(1) (YLFFYRKSV), which has the first amino-acid residue replaced with a modified tyrosine (Y1) residue.63 This sequence enhances the peptide’s affinity for HLA-I molecules and may circumvent the self-tolerance problem.61,63 Additionally, Vx-001 leads to enhanced immunogenicity of the cryptic peptide when presented by HLA-A*0201 molecules (present in 40–45% of population) without changing antigen’s specificity.62

Vx-001 has shown good antitumor efficacy evidenced by inhibition of tumor growth in vivo in HHD transgenic mice and in phase I and II clinical trials in patients with various types of tumors (Table 4).61,62 Vx-001 has completed a large phase I/II clinical trial in 116 patients with different types of advanced stage cancers, including patients with NSCLC, breast cancer, melanoma and cholangiocarcinoma. Vx-001 has shown strong immune response rates in cancer cells, produced long-lasting disease stabilization, and prolonged overall survival.62,64–67 The vaccine was well tolerated, did not induce autoimmunity and resulted only in minor toxicities, and showed a positive correlation between immune response and clinical response in patients with NSCLC.61 Vx-001 is now scheduled for testing in a phase III clinical trial in NSCLC patients.61

GRNVAC1/GRNVAC2 – dendritic cell (DC) based immunotherapy

Dendritic cells (DC) are the most efficient APCs that are capable of producing strong immune response and can be used for tumors for which potent T-cell epitopes have not yet been identified.68 Because they are nonbiased with respect to MHC allele restriction, they can encode epitopes for multiple types of HLA alleles, which may eliminate the need for alleles testing.47,69 GRNVAC1 (Geron
Corporation, Menlo Park, CA) is an autologous dendritic cell vaccine capable of stimulating both CD4+ and CD8+ immune responses.70 GRNVAC1 consists of immature DCs transfected in vivo with a complete mRNA sequence, encoding hTERT and a portion of the lysosomal-associated membrane protein (LAMP-1) (Fig. 4).69,71,72 LAMP-1 directs the hTERT to a lysosome making it easily degradable into peptides and leading to a stronger immune response.69

GRNVAC1 was tested in a randomized phase I clinical trial in 20 patients with metastatic prostate cancer and in a more recent phase II clinical trial in 21 patients with acute myelogenous (myeloid) leukemia (AML) (Table 4). A phase I clinical trial in patients with a metastatic prostate cancer compared the effect of hTERT mRNA-transfected DC vaccine to that of LAMP-hTERT mRNA-transfected DC vaccine (GRNVAC1).55 After three or six weekly injections, vaccinated patients have shown good tolerance with only mild side effects and no signs of autoimmunity. In this trial the LAMP-hTERT group of patients experienced more robust immune responses compared to a group with non-modified hTERT due to a stronger hTERT specific CD4+ and CD8+ T-cell responses.59 The results of treatment showed 95% immune response rate, which was evidenced by a reduction of prostate-specific antigen (PSA) in circulating tumor cells.42,69 and consistent hTERT-specific T cell responses providing a good baseline for future clinical trials. A phase II clinical trial of GRNVAC1 administered to 21 of 33 enrolled AML patients, 19 of which were in clinical remission (CR), with 16/19 in CR1 (8 – intermediate risk and 8 – high risk of relapse), 3/19 in CR2, and 2 in early relapse, showed 55% immune response rate with one patient only developing adverse effects after short vaccination time. An estimate disease free survival at 12 months was 79% for 19CR patients, with 75% for intermediate and 81% for high risk of relapse patients.71,73 These results indicate that prolonged vaccination of patients with up to 32 administrations of GRNVAC1 can be well tolerated with no major toxicities in most patients, producing greater effect on high-risk of relapse AML patients71 (Table 4). Recently developed GRNVAC2 is designed using the same dendritic cell approach except that the DCs are being derived from human embryonic stem cells (hESCs) instead of leukapheresis of each individual patient, and is thus a better vaccine delivery system.74

Telomerase based gene therapies

Oncolytic and suicide gene therapies

Telomelysin (OB-301) (Oncolys BioPharma Inc., Tokyo, Japan), Ad-hTER/hTERT-NTR/CB1954 and hTERTp-HRP/IAA.

See Supplement for additional information.

Other telomerase inhibiting strategies

G-quadruplex stabilizers

G-quadruplex stabilizers are potent ligands that indirectly target telomerase resulting in inhibition of its catalytic activity. G-quadruplex ligands stabilize or promote G-quadruplex structure by preventing G-quadruplex from unwinding and opening the telomeric ends to telomerase thus locking the single stranded telomeric substrate within the T-loop. G-quadruplex ligands may also trigger telomere uncapping by causing dissociation of telomere-associated proteins.19 Most of the G-quadruplex stabilizing ligands contain a polycyclic heteroaromatic structure. BRACO-19, RHPS4 and Telomestatin are three of the most commonly studied G-quadruplex binding ligands. They inhibit telomerase by activat-

BRACO-19 (trisubstituted acridine G-quadruplex Ligand) and RHPS4 (polycyclic acridinium G-quadruplex ligand)

BRACO-19 and RHPS4 are promising small molecule G-quadruplex stabilizing ligands, similar in structure to telomestatin but with less tumor selectivity. Studies have shown that BRACO19 may be a successful single agent therapy for tumors with shorter telomeres and RHPS4 may be best when used in combination with other therapies.85-87 Further details may be found in the Supplemental section.

Targeting telomere and telomerase-associated proteins

Tankyrase inhibitors

Studies have shown that inhibition of tankyrases may lead to inhibition of residual telomerase activity, which is often seen in drug resistant tumors, and could potentially sensitize cells that became resistant to telomerase inhibitors.86-89 Tankyrase 1 and 2 (TNKS1 and TNKS2) belong to the family of telomerase-specific poly (ADP-ribose) polymerases (PARPs).87,92 TNKS1 is activated by binding to DNA breaks and takes part in DNA base excision repair.87 TNKS1 can modify telomere structure by exposing telomeric DNA to telomerase.89 The telomeric DNA binding protein TRF1 is a negative regulator of telomere length, which blocks telomerase access to telomeres.92 Removing TRF1 from telomeres allows telomerase access to telomeric DNA, leading to telomere elongation in telomerase positive cells.94 TNKS1 causes poly (ADP-ribosylation) of TRF1 protein (PARylation), reducing TRF1’s binding to telomeric
DNA, leading to ubiquination95 and a complete release of TRF1 from the DNA strand93,94 TNKS1 may directly contribute to telomere elongation by acting as a positive regulator of telomere length and causing the dissociation of TRF1 from telomeric DNA. Therefore targeting tankyrases with PARP inhibitors may be a new novel anticancer therapy approach.91,93

See Supplement for additional information.

\textit{Inhibition of HSP90}

Heat shock protein 90 (HSP90) is a molecular chaperone required for folding and regulation of its client proteins, many of which are required to promote cancer growth and survival. HSP90 is amplified in cancer cells and exists in multi-chaperone complexes highly dependent on ATP hydrolysis.96 Inhibitors of HSP90 modulate signaling events in tumors by downregulating many tumorigenic proteins, causing their destabilization and degradation from the HSP90 complex.96 Studies show that the HSP90-p23 co-chaperone complex is required for maturation and activation of telomerase.97,98 In a study with telomerase positive oral cancer cell lines it was found that HSP90-hTERT association was required for hTERT promoter activity in cancer cell lines and inhibition of HSP90 could lead to a proteasome-dependent degradation of hTERT.99,100

Geldanamycin (GA) (INVIVOGEN, San Diego, California) is one example of HSP90 inhibitors, which acts through HSP90 and, in addition to other effects it has on HSP90, it blocks the ATP-dependent binding of HSP90 to p23, causing disruption of the chaperone assembly leading to inhibition of the telomerase.97 Due to limited solubility and high hepatotoxicity, the analogues of GA, 17-AAG and 17-DAMG, have been developed and are currently in the phase I and phase II clinical trials.100 A recent study showed that curcumin, which is a natural compound derived from turmeric,101 can cause time- and dose-dependent inhibition of nuclear localization of hTERT in the H1299 NSCLC cell line via proteasome-mediated degradation causing dissociation of p23 from hTERT complex. However, it does not have any effect on HSP90-hTERT binding, indicating that HSP90-p23 complex is required for telomerase activity.102 While it is still unclear how HSP90-p23 mediates nuclear translocation of hTERT from its nonfunctional state in the cytoplasm to a biologically functional state in the nucleus, inhibition of nuclear translocation of telomerase with curcumin or other HSP90-p23 inhibitors may be a promising approach in regulating telomerase translocation during tumorigenic development.102

\textit{T-oligo}

T-oligo is another novel anticancer agent, composed of a single stranded 11-base oligonucleotide sequence (GGTTAGGGTTAG) that is homologous to the sequence of a single stranded telomeric overhang.103,104 Studies have shown that treating various tumor cell lines with T-oligo for a short time could activate potent DNA damage responses in tumor cell lines, mediated through the ATM kinase and its effector proteins such as p53, p57, p95/Nbs1, and E2F1.103,107 These responses were similar to DNA damage responses activated by uncapping of telomeres and those caused by a knockdown of TRF2, leading to activation of DNA damage signals and apoptosis in cancer cells.52,103,104 However, treating normal cells with T-oligo leads to only a transient cell cycle arrest, since normal cells unlike cancer cells have regular cell cycle check points.5,103 Other studies have shown that treatment with T-oligo can cause inhibition of angiogenesis in melanoma cell lines, resulting from a decrease in VEGF receptor signal108 and a reduction of oxidative damage to cells.109 Current studies on T-oligo show very promising results and future research is required to assess T-oligos’ full potential.

\textbf{Discussion and conclusion}

Among various telomerase inhibitors reviewed, the AS-ODN inhibitor GRN163L, hTERT and DC based vaccines GV1001 and GRNVAC1 respectively, may be potential new treatment strategies. Treatment of various tumor cells lines with GRN163L in vitro and in vivo has shown not only inhibition of TA or tumor cell proliferation, but also inhibition of tumor metastasis, indicating its potential for treatment of metastatic cancers. One important finding is that GRN163L has shown inhibition of cancer stem cells or tumor initiating cells in vitro studies with various tumor cell lines, which may be of particular importance for treatment of highly proliferative tumor cell lines (See Supplement and Table 2 for more details). Phase I and II clinical trials were successful in determining MTDs and DLTs for GRN163L in patients with CLD, solid tumor malignancies, MM and breast cancer, with no major cytotoxocities seen, indicating GRN163L can be moved for testing into phase III clinical trials.

While BIBR1532 may not be as promising as GRN163L, studies have shown that it is a highly selective telomere length-dependent inhibitor, which may not be an ideal single therapy agent for most cancers but may be a good choice of treatment for cancers with short telomeres.101 In addition BIBR1532 may be used as a combination therapy with standard of care or traditional therapy to sensitize certain drug-resistant cell lines to other chemotherapies.35,40

GV1001 and GRNVAC1 are both promising telomerase targeting vaccines, capable of stimulating CD4+ and CD8+ responses in telomerase positive tumors, showing minimal effects on normal cells, low cytotoxicity and no autoimmunity. Clinical trials with GV1001 in patients with pancreatic adenocarcinoma, stage IV metastatic melanoma, and advanced stages of NSCLC and HCC, have shown good overall immune response rates, after short treatment times, ranging from 39% to 95% depending on tumor type, stage and dosage (Table 4). Larger and long-term studies may be required to further determine long-term toxicity of GV1001. Because patients with advanced stages of cancers have poor survival or may develop disease metastases, it is suggested that studying GV1001 in patients with less advanced stages may increase overall survival rates.46,109

Compared to GV1001, GRNVAC1 vaccine has shown better efficacy in clinical trials, with stronger hTERT specific CD4+ and CD8+ responses in telomerase positive tumors, showing secretion and stimulating CTL-mediated tumor cell lysis. It has had good immune responses in patients with metastatic prostate tumors and AML, showing greater DFS in high-risk AML patients. If difficulties with DC vaccine production, such as DCs derivation and maturation could be easily overcome in the future trials, DC vaccines may become successful methods of immunogenic telomerase targeting.

Although small molecule inhibitors or immunotherapies may be effective methods of telomerase inhibition, there is always a concern that cells may gain resistance to direct telomerase inhibitors after excessive telomere shortening.88 Thus, studying G-quadruplex stabilizers, tankyrase enzyme inhibitors and T-oligo may help to solve this problem.

While most of the telomerase targeting therapeutics showed success in preclinical or clinical studies, a combination therapy of telomerase inhibitors and standard of care or traditional therapy may be the most effective way to target telomerase positive tumors. This may help to overcome common issues with standard treatments, such as tumor relapse or recurrence and a long lag time, common for many telomerase targeting monotherapies. Combination therapy may increase drug efficacy causing critical telomere shortening, antitumor mass shrinkage, and may require lower drug doses thus reducing cytotoxicity on normal cells.
Conflict of interest statement

No conflict of interest.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.crtv.2012.06.007.

References

74. Brower V. Telomerase-based therapies emerging slowly.

65. Vetsika EK, Konsolakis G, Bolonaki E, Kotsakis A, Papadimitraki E, Christou N,

66. Kotsakis A, Vetsika K, Christou N, Drogaris M, Pantazopoulos N, Aggouraki D,

59. Royal Liverpool University Hospital. In: ClinicalTrials.gov [Internet]. UK.

74. Brower V. Telomerase-based therapies emerging slowly.

83. Monchaud D, Granados M, Lebas M, Quenin A, Mersey E, Trastle-Fichou MP.

85. Gowan SM, Harrison JK, Patterson L, Valenti M, Read MA, Needle S, et al. A G-

89. Lee MS, Yaar M, Eller MS, Runger TM, Gao Y, Gilchrest BA. Telomeric DNA

